Cell size as a link between noncoding DNA and metabolic rate scaling.

نویسندگان

  • J Kozłowski
  • M Konarzewski
  • A T Gawelczyk
چکیده

Accumulation of noncoding DNA and therefore genome size (C-value) may be under strong selection toward increase of body size accompanied by low metabolic costs. C-value directly affects cell size and specific metabolic rate indirectly. Body size can enlarge through increase of cell size and/or cell number, with small cells having higher metabolic rates. We argue that scaling exponents of interspecific allometries of metabolic rates are by-products of evolutionary diversification of C-values within narrow taxonomic groups, which underlines the participation of cell size and cell number in body size optimization. This optimization leads to an inverse relation between slopes of interspecific allometries of metabolic rates and C-value. To test this prediction we extracted literature data on basal metabolic rate (BMR), body mass, and C-value of mammals and birds representing six and eight orders, respectively. Analysis of covariance revealed significant heterogeneity of the allometric slopes of BMR and C-value in both mammals and birds. As we predicted, the correlation between allometric exponents of BMR and C-value was negative and statistically significant among mammalian and avian orders.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling of number, size, and metabolic rate of cells with body size in mammals.

The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and averag...

متن کامل

Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton.

The relationship between phytoplankton cell size and abundance has long been known to follow regular, predictable patterns in near steady-state ecosystems, but its origin has remained elusive. To explore the linkage between the size-scaling of metabolic rate and the size abundance distribution of natural phytoplankton communities, we determined simultaneously phytoplankton carbon fixation rates...

متن کامل

Changes in body temperature influence the scaling of VO2max and aerobic scope in mammals.

Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR ...

متن کامل

Ontogeny of Metabolic Rate and Red Blood Cell Size in Eyelid Geckos: Species Follow Different Paths

While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Bas...

متن کامل

Intraspecific metabolic scaling exponent depends on red blood cell size in fishes.

The metabolic-level boundaries (MLB) hypothesis and the cell metabolism (CM) hypothesis have been proposed to explain the body mass scaling of metabolic rate. The MLB hypothesis focuses mainly on the influence of the metabolic level on the relative importance of volume and surface area constraints. The CM hypothesis focuses on the variation of cell size as the body grows. The surface area to vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 24  شماره 

صفحات  -

تاریخ انتشار 2003